Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Curr Top Dev Biol ; 159: 132-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729675

RESUMO

The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.


Assuntos
Crista Neural , Animais , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia , Humanos , Sensação/fisiologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/citologia , Vertebrados/embriologia , Vertebrados/fisiologia
2.
Insect Biochem Mol Biol ; 140: 103704, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942331

RESUMO

Triatomine bugs are the blood feeding insect vectors transmitting Chagas disease to humans, a neglected tropical disease that affects over 8 million people, mainly in Latin America. The behavioral responses to host cues and bug signals in Rhodnius prolixus are state dependent, i.e., they vary as a function of post-ecdysis age. At the molecular level, these changes in behavior are probably due to a modulation of peripheral and central processes. In the present study, we report a significant modulation of the expression of a large set of sensory-related genes. Results were generated by means of antennal transcriptomes of 5th instar larvae along the first week (days 0, 2, 4, 6 and 8) after ecdysis sequenced using the Illumina HiSeq platform. Significant age-induced changes in transcript abundance were established for more than 6120 genes (54,7% of 11,186 genes expressed) in the antenna of R. prolixus. This was especially true between the first two days after ecdysis when more than 2500 genes had their expression significantly altered. In contrast, expression profiles were almost identical between day 6 and 8, with only a few genes showing significant modulation of their expression. A total of 86 sensory receptors, odorant carriers and odorant degrading enzymes were significantly modulated across age points and clustered into three distinct expression profiles. The set of sensory genes whose expression increased with age (profile 3) may include candidates underlying the increased responsiveness to host cues shown by R. prolixus during the first days after molting. For the first time, we describe the maturation process undergone at the molecular level by the peripheral sensory system of a hemimetabolous insect.


Assuntos
Antenas de Artrópodes , Genes de Insetos , Rhodnius , Órgãos dos Sentidos , Animais , Doença de Chagas/transmissão , Perfilação da Expressão Gênica , Insetos Vetores/genética , Insetos Vetores/metabolismo , Larva/genética , Larva/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Olfato/genética , Transcriptoma
3.
J Perinat Med ; 49(8): 979-989, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34478615

RESUMO

Experimental and clinical studies suggest that prenatal experiences may influence health trajectories up to adulthood and high age. According to the hypothesis of developmental origins of health and disease exposure of pregnant women to stress, nutritional challenges, infection, violence, or war may "program" risks for diseases in later life. Stress and anxieties can exist or be provoked in parents after fertility treatment, after information or diagnosis of fetal abnormalities and demand simultaneous caring concepts to support the parents. In vulnerable groups, it is therefore important to increase the stress resilience to avoid harmful consequences for the growing child. "Enriched environment" defines a key paradigm to decipher how interactions between genes and environment change the structure and function of the brain. The regulation of the fetal hippocampal neurogenesis and morphology during pregnancy is one example of this complex interaction. Animal experiments have demonstrated that an enriched environment can revert consequences of stress in the offspring during critical periods of brain plasticity. Epigenetic markers of stress or wellbeing during pregnancy might even be diagnosed by fragments of placental DNA in the maternal circulation that show characteristic methylation patterns. The development of fetal senses further illustrates how external stimulation may impact individual preferences. Here, we therefore not only discuss how maternal stress influences cognitive development and resilience, but also design possibilities of non-invasive interventions for both mothers and children summarized and evaluated in the light of their potential to improve the health of future generations.


Assuntos
Desenvolvimento Fetal , Gravidez/psicologia , Efeitos Tardios da Exposição Pré-Natal , Resiliência Psicológica , Estresse Psicológico , Animais , Feminino , Interação Gene-Ambiente , Humanos , Órgãos dos Sentidos/embriologia
4.
Med Hypotheses ; 134: 109432, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31639594

RESUMO

We hypothesize that the competence of a newborn in the first hours after birth is the direct result of behavior training that begins during the first 12 weeks of fetal life. Correlation of Widström's 9 Instinctive Stages (behaviors of the full-term newborn during the first hours after birth) with the developmental movements during fetal life demonstrate that the fetus is invested in learning specific tasks, in a specific order, that are evolutionarily necessary for survival during the first hour and beyond.


Assuntos
Desenvolvimento Fetal/fisiologia , Movimento Fetal/fisiologia , Comportamento do Lactente/fisiologia , Recém-Nascido/fisiologia , Método Canguru , Modelos Biológicos , Evolução Biológica , Feminino , Humanos , Recém-Nascido/psicologia , Aprendizagem , Modelos Psicológicos , Atividade Motora , Gravidez , Sensação/fisiologia , Órgãos dos Sentidos/embriologia
6.
Development ; 144(15): 2810-2823, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684624

RESUMO

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Assuntos
Transdução de Sinais/fisiologia , Vertebrados/embriologia , Animais , Comunicação Celular/genética , Comunicação Celular/fisiologia , Embrião de Galinha , Galinhas , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Eletroporação , Gânglios Sensitivos/citologia , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Codorniz , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/metabolismo
7.
Development ; 144(11): 1926-1936, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28559238

RESUMO

Perception of the environment in vertebrates relies on a variety of neurosensory mini-organs. These organs develop via a multi-step process that includes placode induction, cell differentiation, patterning and innervation. Ultimately, cells derived from one or more different tissues assemble to form a specific mini-organ that exhibits a particular structure and function. The initial building blocks of these organs are epithelial cells that undergo rearrangements and interact with neighbouring tissues, such as neural crest-derived mesenchymal cells and sensory neurons, to construct a functional sensory organ. In recent years, advances in in vivo imaging methods have allowed direct observation of these epithelial cells, showing that they can be displaced within the epithelium itself via several modes. This Review focuses on the diversity of epithelial cell behaviours that are involved in the formation of small neurosensory organs, using the examples of dental placodes, hair follicles, taste buds, lung neuroendocrine cells and zebrafish lateral line neuromasts to highlight both well-established and newly described modes of epithelial cell motility.


Assuntos
Células Epiteliais/citologia , Organogênese , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/embriologia , Células Receptoras Sensoriais/citologia , Animais , Diferenciação Celular , Movimento Celular , Humanos
8.
Science ; 356(6337)2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28386027

RESUMO

The emergence of spatial patterns in developing multicellular organisms relies on positional cues and cell-cell communication. Drosophila sensory organs have informed a paradigm in which these operate in two distinct steps: Prepattern factors drive localized proneural activity, then Notch-mediated lateral inhibition singles out neural precursors. Here we show that self-organization through Notch signaling also establishes the proneural stripes that resolve into rows of sensory bristles on the fly thorax. Patterning, initiated by a gradient of Delta ligand expression, progresses through inhibitory signaling between and within stripes. Thus, Notch signaling can support self-organized tissue patterning as a prepattern is transduced by cell-cell interactions into a refined arrangement of cellular fates.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Receptores Notch/metabolismo , Órgãos dos Sentidos/embriologia , Animais , Padronização Corporal/genética , Comunicação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Teóricos , Receptores Notch/genética , Órgãos dos Sentidos/citologia , Transdução de Sinais , Células-Tronco/metabolismo , Tórax/inervação
9.
Dev Biol ; 424(1): 50-61, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28238736

RESUMO

Arthropods have numerous sense organs, which are adapted to their habitat. While some sense organs are similar in structure and function in all arthropod groups, structural differences in functionally related sense organs have been described, as well as the absence of particular sense organ subtypes in individual arthropod groups. Here we address the question of how the diverse structures of arthropod sense organs have evolved by analysing the underlying molecular developmental processes in a crustacean, an arthropod group that has been neglected so far. We have investigated the development of four types of chemo- and mechanosensory sense organs in the branchiopod Daphnia magna (Cladocera) that either cannot be found in arthropods other than crustaceans or represent adaptations to an aquatic environment. The formation of the sensory organ precursors shows greater similarity to the arthropod taxa Chelicerata and Myriapoda than to the more closely related insects. All analysed sense organ types co-express the proneural genes ASH and atonal regardless of their structure and function. In contrast, in Drosophila melanogaster, ASH and atonal expression does not overlap and the genes confer different sense organ subtype identities. We performed experimental co-expression studies in D. melanogaster and found that the combinatorial expression of ato and ASH can change the external structure of sense organs. Our results indicate a central role for ASH and Atonal family members in the emergence of structural variations in arthropod sense organs.


Assuntos
Evolução Biológica , Daphnia/embriologia , Daphnia/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Larva/ultraestrutura , Órgãos dos Sentidos/ultraestrutura , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
10.
J Morphol ; 277(11): 1423-1446, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27492810

RESUMO

Using immunohistochemical labeling against acetylated a-tubulin and serotonin in combination with confocal laser scanning microscopy and 3D-reconstruction, we investigated the temporary freshwater pond inhabitant Branchinella sp. (Crustacea: Branchiopoda: Anostraca) for the first time to provide detailed data on the development of the anostracan nervous system. Protocerebral sense organs such as the nauplius eye and frontal filament organs are present as early as the hatching stage L0. In the postnaupliar region, two terminal pioneer neurons grow from posterior to anterior to connect the mandibular neuromeres. The first protocerebral neuropil to emerge is not part of the central complex but represents the median neuropil, and begins to develop from L0+ onwards. In stage L3, the first evidence of developing compound eyes is visible. This is followed by the formation of the visual neuropils and the neuropils of the central complex in the protocerebrum. From the deutocerebral lobes, the projecting neuron tract proceeds to both sides of the lateral protocerebrum, forming a chiasma just behind the central body. In the postnaupliar region, the peripheral nervous system, commissures and connectives develop along an anterior-posterior gradient after the fasciculation of the terminal pioneer neurons with the mandibular neuromere. The peripheral nervous system in the thoracic segments consists of two longitudinal neurite bundles on each side which connect the intersegmental nerves, together with the ventral nervous system forming an orthogon-like network. Here, we discuss, among other things, the evidence of a fourth nauplius eye nerve and decussating projecting neuron tract found in Branchinella sp., and provide arguments to support our view that the crustacean frontal filament (organ) and onychophoran primary antenna are homologous. J. Morphol. 277:1423-1446, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anostraca/embriologia , Evolução Biológica , Encéfalo/embriologia , Órgãos dos Sentidos/embriologia , Animais , Anostraca/anatomia & histologia , Encéfalo/anatomia & histologia , Embrião não Mamífero/anatomia & histologia , Larva/anatomia & histologia , Órgãos dos Sentidos/anatomia & histologia
11.
Elife ; 4: e11375, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26473744

RESUMO

Several signaling pathways work together, via a protein called Amotl2a, to establish the size and shape of a zebrafish sense organ primordium.


Assuntos
Proteínas de Membrana/metabolismo , Órgãos dos Sentidos/embriologia , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Angiomotinas , Animais , Modelos Biológicos
12.
PLoS One ; 10(7): e0132544, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225420

RESUMO

In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so)/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B). In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B), during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.


Assuntos
Evolução Biológica , Evolução Molecular , Células Fotorreceptoras de Invertebrados/fisiologia , Cifozoários/genética , Órgãos dos Sentidos/embriologia , Animais , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Organogênese/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Filogenia , Proteínas Repressoras/genética , Cifozoários/embriologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Fatores de Transcrição/genética
13.
PLoS One ; 10(3): e0118582, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760328

RESUMO

Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.


Assuntos
Órgãos dos Sentidos/embriologia , Baleias/embriologia , Animais , Percepção Auditiva , Ecolocação , Cabeça/anatomia & histologia , Cabeça/embriologia , Órgãos dos Sentidos/anatomia & histologia , Baleias/anatomia & histologia
14.
Dev Biol ; 397(2): 162-74, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446278

RESUMO

The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Sistema Nervoso Periférico/embriologia , Órgãos dos Sentidos/embriologia , Animais , Cruzamentos Genéticos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Confocal , Células-Tronco Neurais/citologia , Neurônios/citologia , Órgãos dos Sentidos/citologia , Transgenes/genética
15.
Dev Biol ; 398(1): 120-33, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478911

RESUMO

Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells.


Assuntos
Cílios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/fisiologia , Órgãos dos Sentidos/embriologia , Animais , Embrião não Mamífero/metabolismo , Evolução Molecular , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Metamorfose Biológica/genética , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/fisiologia , Transdução de Sinais , Especificidade da Espécie , Fatores de Transcrição/metabolismo
16.
Dev Biol ; 389(1): 82-97, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24495912

RESUMO

Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.


Assuntos
Evolução Biológica , Ectoderma/embriologia , Órgãos dos Sentidos/embriologia , Vertebrados/embriologia , Animais , Padronização Corporal , Diferenciação Celular , Movimento Celular , Ectoderma/citologia , Modelos Biológicos , Órgãos dos Sentidos/citologia , Vertebrados/classificação
17.
Dev Biol ; 389(1): 50-67, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508480

RESUMO

For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.


Assuntos
Orelha Interna/embriologia , Ectoderma/embriologia , Neurogênese/fisiologia , Condutos Olfatórios/embriologia , Órgãos dos Sentidos/embriologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Orelha Interna/citologia , Orelha Interna/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurogênese/genética , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
18.
Nat Commun ; 3: 1041, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948823

RESUMO

The paratympanic organ, a mechanosensory hair cell-containing pouch in the amniote middle ear, was first described 100 years ago, yet its origins remain unresolved. Homology with the anamniote spiracular organ is supported by association with homologous skeletal elements and similar central targets of afferent neurons, suggesting it might be a remnant of the water-dependent lateral line system, otherwise lost during the amniote transition to terrestrial life. However, this is incompatible with studies suggesting that it arises from the first epibranchial (geniculate) placode. Here we show that a previously undiscovered Sox2-positive placode, immediately dorsal to the geniculate placode, forms the paratympanic organ and its afferent neurons, which are molecularly and morphologically distinct from geniculate neurons. These data remove the only obstacle to accepting the homology of the paratympanic organ and spiracular organ. We hypothesize that the paratympanic organ/spiracular organ represents an ancient head ectoderm module, developmentally and evolutionarily independent of both lateral line and epibranchial placodes.


Assuntos
Orelha Média/embriologia , Ectoderma/embriologia , Células Ciliadas Auditivas/citologia , Vertebrados/embriologia , Animais , Evolução Biológica , Embrião de Galinha , Galinhas/metabolismo , Orelha Média/citologia , Orelha Média/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Células Ciliadas Auditivas/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Filogenia , Codorniz/embriologia , Codorniz/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/metabolismo , Tubarões/embriologia , Tubarões/metabolismo , Vertebrados/classificação , Vertebrados/genética , Vertebrados/metabolismo
19.
Dev Biol ; 368(1): 95-108, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22659139

RESUMO

The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.


Assuntos
Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Sequência de Bases , Síndrome Brânquio-Otorrenal/genética , Embrião de Galinha , Sequência Conservada/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Evolução Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Dados de Sequência Molecular , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/metabolismo , Homologia de Sequência do Ácido Nucleico , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/metabolismo
20.
Dev Biol ; 367(1): 55-65, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564795

RESUMO

In the vertebrate head, central and peripheral components of the sensory nervous system have different embryonic origins, the neural plate and sensory placodes. This raises the question of how they develop in register to form functional sense organs and sensory circuits. Here we show that mutual repression between the homeobox transcription factors Gbx2 and Otx2 patterns the placode territory by influencing regional identity and by segregating inner ear and trigeminal progenitors. Activation of Otx2 targets is necessary for anterior olfactory, lens and trigeminal character, while Gbx2 function is required for the formation of the posterior otic placode. Thus, like in the neural plate antagonistic interaction between Otx2 and Gbx2 establishes positional information thus providing a general mechanism for rostro-caudal patterning of the ectoderm. Our findings support the idea that the Otx/Gbx boundary has an ancient evolutionary origin to which different modules were recruited to specify cells of different fates.


Assuntos
Embrião de Galinha , Ectoderma/embriologia , Proteínas de Homeodomínio/metabolismo , Órgãos dos Sentidos/embriologia , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais , Morfogênese , Fatores de Transcrição Otx
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA